Programme Title: Pharmaceutical Chemistry (MSci)

Programme Specification

Awarding Body/Institution: Queen Mary, University of London
Teaching Institution: Queen Mary, University of London
Name of Final Award and Programme Title: Master in Science (MSci) in Pharmaceutical Chemistry
Name of Interim Award(s):
Duration of Study / Period of Registration: 4 years
QM Programme Code / UCAS Code(s): UMIF-QMCHEM1 / USPHC (F152) and USEF-QM5CHE1 / USPHC
QAA Benchmark Group: Chemistry
FHEQ Level of Award: Level 7
Programme Accredited by:
Date Programme Specification Approved:
Responsible School / Institute: School of Biological & Chemical Sciences

Schools which will also be involved in teaching part of the programme
School of Biological & Chemical Sciences

Institution(s) other than Queen Mary that will provide some teaching for the programme

Programme Outline

This programme aims to provide a comprehensive training in the field of chemistry, with an introduction to key principles of biochemistry, physiology and pharmacology. Emphasis is given to molecular concepts of complex biological systems and the relevance of all the above to the development of medicinal drugs. Students following this program will therefore learn about important chemical principles and their relationship to biological systems, and are well-trained for careers in the pharmaceutical industry.

This four-year MSci programme initially runs in parallel with the three-year F154 Pharmaceutical Chemistry BSc programme, and years 1 and 2 of the two programmes are identical. Students are therefore normally able to switch between the two programmes up to the third year (although any transfer from the BSc to MSci programme will be subject to the student meeting the higher progression hurdles of the MSci programme).

The final year of the MSci programme provides students with the opportunity to undertake a major research project, and experience of working in a research environment. The project also typically includes training in more advanced practical and/or instrumental techniques. The degree is therefore particularly suitable for those seeking to pursue a career as a professional research chemist, especially one in the pharmaceutical industry.
Programme Title: Pharmaceutical Chemistry (MSci)

Aims of the Programme

This programme aims to provide a comprehensive training in the field of pharmaceutical chemistry, yielding graduates who are well versed in all the main areas of the subject. More specifically, students will be suitably-trained for professional employment or further study through having:

- wide-ranging knowledge of chemical topics up to an advanced level;
- an understanding of basic principles of human physiology, biochemistry and drug action;
- knowledge of the drug-development process (including drug discovery and synthesis);
- skills in solving problems of a chemical nature, and in the interpretation and assessment of chemical data;
- advanced practical skills in the conduct of chemical reactions/experiments and in a range of analytical/preparative techniques;
- experience in the undertaking of a major research-based project.

More generally, the programme aims to:

- provide a rational and coherent programme of study which is relevant to the needs of employers, facilitates the professional development of the student and lays the foundations for a successful career to the benefit of the economy and society;
- provide a sound knowledge base in the fields studied and develop key transferable skills in the areas of communication, numeracy, information technology, team-working, problem-solving, time and task management;
- foster the development of an enquiring, open-minded and creative attitude, tempered with scientific discipline and social awareness, which encourages lifelong learning.

What Will You Be Expected to Achieve?

Students who successfully complete the programme are expected to possess the following knowledge/skills/attributes:

Academic Content:

<table>
<thead>
<tr>
<th>A1</th>
<th>Basic essential facts, fundamental concepts, principles and theories of chemistry and pharmacology.</th>
</tr>
</thead>
</table>
| A2 | Facts, concepts, principles and theories at an advanced level across a wide range of chemical topics, typically including most of the following areas:
Organic Chemistry: including organic structures and functional groups, stereochemistry, reactions and mechanisms, molecular synthesis, biological aspects of organic chemistry.
Inorganic Chemistry: including structure and bonding, chemistry of selected elements, solid-state chemistry, metal complexes and organometallics, applications of inorganic chemistry.
Physical Chemistry: including chemical thermodynamics and kinetics, quantum theory and molecular bonding, spectroscopic techniques, interfaces and solution chemistry.
Analytical Chemistry: including chemical analysis, molecular spectroscopy, separation techniques, advanced analytical instrumentation. |
| A3 | Topics in pharmacology: including drug design and targets; mode of action and metabolism; pharmacokinetics; cancer chemotherapy; structure-activity relationships and methods of drug discovery. |
| A4 | Understanding of scientific methodology and approaches to the design of experiments. |
| A5 | Knowledge of advanced methods and techniques in practical chemistry. |
| A6 | Research and communication skills: including detailed knowledge on accessing, manipulating, interpreting and presenting chemical information. |

Disciplinary Skills - able to:
Programme Title: Pharmaceutical Chemistry (MSci)

B1	identify and formulate problems; plan strategies for their solution; apply chemical principles to the solution of unfamiliar problems.
B2	retrieve, filter and collate chemical data from a variety of information sources.
B3	evaluate existing knowledge and produce analyses based upon evidence.
B4	plan and conduct laboratory-based practical work (including research-led experiments), efficiently and with due regard for safety.
B5	use a wide range of laboratory equipment, including advanced analytical instrumentation.
B6	analyse, evaluate and interpret the results of controlled experiments, and research results.
B7	prepare scientific/technical reports (including extended dissertations) of an appropriate professional standard.
B8	use a range of scientific software and computational tools.
B9	plan, undertake and report on a bibliographically-based piece of research.
B10	communicate scientific results clearly and in a manner appropriate for the audience and setting.
B11	design experiments to acquire relevant scientific data /test scientific hypotheses; propose plausible schemes for the experimental synthesis of chemical products and/or computational approaches for advanced investigations.
B12	progress an extended research project in chemistry, including the ability to assimilate published knowledge and advance a subject area through research.

Attributes:

C1	communicate effectively by written and/or verbal means.
C2	manage time, prioritise workloads and work to deadlines; make decisions in complex and unpredictable situations.
C3	capacity for independent learning, using a wide-range of learning resources, and for further personal development.
C4	ability to work independently, with minimal or no supervision.
C5	participate constructively as a member of a group/team.
C6	apply scientific knowledge and problem-solving skills in a wide range of theoretical and practical situations.
C7	ability to assess the relevance, importance and reliability of the ideas of others.
C8	use IT/computer-based technology to effectively locate information and to analyse, manipulate and data.
C9	awareness of the role and impact of science in society; ability to explain and discuss such topics.
C10	reason critically, so as to make appropriate deductions and propose hypotheses, based on the assessment of available evidence and data.
Programme Title: Pharmaceutical Chemistry (MSci)

How Will You Learn?

Acquisition of knowledge is achieved mainly through lectures and directed independent learning. Understanding is reinforced through a combination of workshops and problem classes, tutorials and laboratory classes (depending upon the module concerned), which include provision of regular feedback on submitted assignments.

Additional learning support is made available through Queen Mary's online learning environment (QMplus), via the provision of various primers and guidance notes, online recordings and other supplementary learning materials. A range of chemistry software (including molecular modelling software) and other scientific software is available through the QMUL Student PC Service.

Skills in the application of chemical theories and concepts, including analysis and problem-solving skills, are developed by a progression of graded problem classes and tutorial exercises.

Chemistry practical skills are also developed in a progressive manner throughout the programme. In the first year attention is concentrated on the basic laboratory skills and safe working practice, while at higher levels more advanced techniques and non-prescribed exercises are introduced. These practical modules thereby offer the opportunity to develop skills in practical laboratory chemistry, to integrate knowledge from other modules, and to improve skills relating to data analysis and interpretation.

Project work offers students the opportunity to demonstrate achievement in research skills, including collating relevant information and critical appraisal of data. In particular, the final year practical research project is important in reinforcing and extending the students’ complete portfolio of professional practical skills.

How Will You Be Assessed?

Assessment of the academic content of the programme is generally through a combination of unseen written examinations and assessed coursework. The exact nature of the coursework varies from module to module, but may include work in the form of problem sheets, essays or other types of written assignments. The coursework mark may also include a contribution from computer-based assessments and in-course tests.

In the first year, chemistry practical skills are predominantly assessed through completion of short laboratory reports, based on a supplied report template. In later years, both practical skills and report-writing skills are assessed through written laboratory reports, and includes attention to the quality of samples, reliability of data and skills of interpretation, and quantitative accuracy.

Specific modules (such as the project-based modules) include assessed oral examinations, oral presentations and extended reports/dissertations.

How is the Programme Structured?

Students are required to register for modules to a value of 120 credits in each academic year; this should normally consist of 60 credits in each semester.

YEAR 1
Core modules (15 credits in total):
CHE101 Foundations of Practical Chemistry (15 credits, level 4, sem A+B)

Compulsory modules (105 credits in total):
CHE100 Essential Skills for Chemists (15 credits, level 4, sem A+B)
CHE102A Fundamentals of Organic Chemistry Semester A (15 credits, level 4, sem A)
CHE102B Fundamentals of Organic Chemistry Semester B (15 credits, level 4, sem B)
CHE103A Fundamentals of Physical & Inorganic Chemistry Semester A (15 credits, level 4, sem A)
Programme Title: Pharmaceutical Chemistry (MSci)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Level</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE103B</td>
<td>Fundamentals of Physical & Inorganic Chemistry Semester B</td>
<td>15</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>CHE104</td>
<td>Fundamentals of Spectroscopy</td>
<td>15</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>BIO161</td>
<td>Basic Biochemistry</td>
<td>15</td>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>

YEAR 2
Core modules (15 credits in total):
CHE201 Practical Chemistry (15 credits, level 5, sem A+B)

Compulsory modules (105 credits in total):
CHE202A Structure & Reactivity in Organic Chemistry Semester A (15 credits, level 5, sem A)
CHE202B Structure & Reactivity in Organic Chemistry Semester B (15 credits, level 5, sem B)
CHE203A Solid State & Inorganic Chemistry Semester A (15 credits, level 5, sem A)
CHE203B Solid State & Inorganic Chemistry Semester B (15 credits, level 5, sem B)
CHE206A Pharmaceutical Chemistry Semester A (15 credits, level 5, sem A)
CHE206B Pharmaceutical Chemistry Semester B (15 credits, level 5, sem B)
CHE204A Physical & Quantum Chemistry Semester A (15 credits, level 5, sem A)

YEAR 3
Compulsory modules (90 credits in total):
CHE301 Advanced Practical Chemistry 1 (15 credits, level 6, sem A)*
CHE311 Advanced Practical Chemistry 2 (15 credits, level 6, sem B)
CHE302U Organic Synthesis (15 credits, level 6, sem A)
CHE305U Computational Chemistry (15 credits, level 6, sem B)
CHE306U Advanced Pharmaceutical Chemistry (15 credits, level 6, sem B)
CHE602 Literature Project in Chemistry (15 credits, level 6, sem A+B)

Plus 30 credits from the following:
CHE303U Topics in Inorganic Chemistry (15 credits, level 6, sem A)
CHE304U Topics in Physical Chemistry (15 credits, level 6, sem A)
CHE307 Bioorganic Chemistry (15 credits, level 6, sem B)

* the first part of this module generally runs after the completion of second-year examinations

YEAR 4
Core modules (60 credits in total):
CHE751 Pharmaceutical Chemistry MSci Research Project (60 credits, level 7, sem A+B)

Compulsory modules (30 credits in total):
CHE401 Professional Skills for Chemists (15 credits, level 7, sem A+B)
CHE406U Drug Development & Design (15 credits, level 7, sem A)

Plus 30 credits from the following:
CHE402 Advanced Biological Chemistry (15 credits, level 7, sem A)
CHE403U Advanced Topics in Inorganic Chemistry (15 credits, level 7, sem A)
CHE404U Advanced Topics in Physical Chemistry (15 credits, level 7, sem B)
CHE405U Catalysis in Chemistry (15 credits, level 7, sem B)

Academic Year of Study
Programme Title: Pharmaceutical Chemistry (MSci)

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
</table>

What Are the Entry Requirements?

Candidates must be able to satisfy the general admissions requirements of the University and meet the requirements for this specific programme of study. This is usually achieved in one of the following ways (although the entry-points tariff is subject to annual review):

For direct entry to the degree programme, candidates must usually possess a minimum total of 300 points on the UCAS points tariff system, including a minimum of a grade B in ‘A2’ Chemistry or an equivalent qualification. Mathematics at AS-level or higher is strongly recommended. Biology at AS-level or higher is desirable.

or via

Admission to the QMUL Science and Engineering Foundation Programme (SEFP), and successful completion of the foundation year (defined by achievement of the minimum requirements for progression defined in the SEFP programme regulations, and the criteria specified in the SEFP Student Handbook for progression to this particular degree programme).

How Do We Listen and Act on Your Feedback?

The Staff-Student Liaison Committee (SSLC) provides a formal means of communication and discussion between the School and its students. The committee consists of student representatives from each year in the school together with appropriate representation from staff within the school. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. The SSLC meets regularly throughout the year.

The School’s Teaching & Learning Committee (TLC) advises the Director of Taught Programmes on all matters relating to the delivery of taught programmes at school level including monitoring the application of relevant QM policies and reviewing all proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in the committee’s work in a number of ways, including through student membership, and consideration of various student surveys.

All schools operate an Annual Programme Review of their taught undergraduate and postgraduate provision. APR is a continuous process of reflection and action planning which is owned by those responsible for programme delivery; the main document of reference for this process is the Taught Programmes Action Plan (TPAP) which is the summary of the school’s work throughout the year to monitor academic standards and to improve the student experience. Students’ views are considered in this process through analysis of the NSS and module evaluation questionnaires.

Academic Support

The induction programme for new undergraduate students includes:

- briefings from senior staff on matters relating to general university study
- briefings on the conduct of chemistry practicals and laboratory matters
- an introduction to Library Services

Each student is then assigned a personal academic guidance tutor (or "advisor") who remains their main point of contact regarding academic matters and pastoral concerns throughout their degree programme. Students can see their advisors in their office hours or arrange an appointment via email. If advisors are not readily available, or cannot help with a specific problem, the School has several Senior Academic Advisors (typically one for each division) to facilitate student concerns.

The School also operates a Peer-Assisted Study Support (PASS) programme to provide peer guidance for first-year students.

Each module has a module coordinator, whose role is to ensure that the module runs smoothly, and that an appropriate level of
Programme Title: Pharmaceutical Chemistry (MSci)

Information is provided to students of the module.

Project-work is carried out under the guidance of a specific academic member of staff (the "supervisor"), whose role includes the provision of academic and technical guidance, as well as monitoring your progress throughout the project.

Programme-specific Rules and Facts

This programme is governed by Queen Mary's general Academic Regulations, and the following programme-specific rules.

The following regulations apply to students starting their Level 4 (year 1) studies on this programme in September 2013, or thereafter. For the regulations applying to earlier entrants, please check previous versions of this programme specification.

Progression Criteria

Year 1 to Year 2
105 credits passed.

Year 2 to Year 3
210 credits passed, with a minimum overall average (based on a 1:3 weighting of all modules from years 1 and 2) of 60%.

Year 3 to Year 4
315 credits passed, with a minimum overall average (based on a 1:3:6 weighting of all modules from years 1, 2 and 3) of 60%.

Candidates failing to meet the progression criteria at the end of year 1 or year 2 will be subject to an enforced change of programme registration to the F100 Chemistry BSc programme.

Candidates failing to progress to the fourth year of the MSci degree will be classified for a BSc degree in Chemistry using the College S3 mean (as per the F100 programme specification).

Regulations relating to MSci Award / Classification

The classification of honours for this MSci degree programme is based on the College Mark calculated using a 1:3:6:6 weighting of the Years 1-4 of the programme (as indicated in the General Academic Regulations 2013/14).

Candidates entering into the fourth year but failing to meet the requirements for the award of the MSci degree, will be considered for the award of the BSc degree in Chemistry, and classified using the algorithm for calculating the College Mark for BSc degrees.

Specific Support for Disabled Students

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:
• Finding out if you have a specific learning difficulty like dyslexia
• Applying for funding through the Disabled Students' Allowance (DSA)
• Arranging DSA assessments of need
• Special arrangements in examinations
• Accessing loaned equipment (e.g. digital recorders)
• Specialist one-to-one “study skills” tuition
• Ensuring access to course materials in alternative formats (e.g. Braille)
• Providing educational support workers (e.g. note-takers, readers, library assistants)
• Mentoring support for students with mental health issues and conditions on the autistic spectrum.
Links With Employers, Placement Opportunities and Transferable Skills

Chemistry is often regarded as the "central science", and interfaces with physics, biology, materials science and medicine.

This four year MSci degree, which is recognised by the Royal Society of Chemistry, offers a high-level of training in theoretical aspects of chemistry, and also covers key aspects of biochemistry, physiology and pharmacology. Graduates of this MSci programme generally have significantly more experience in the conduct of advanced practical chemistry than would be the case for graduates of the corresponding BSc degree, and have experience of undertaking an extended research project. MSci graduates can therefore be expected to possess a wider range of practical skills, and a greater ability to undertake independent research studies. The degree is therefore particularly suitable for those seeking to pursue a career as a professional research chemist, especially in the pharmaceutical industry.

Graduates of chemistry degree courses are generally recognised by employers as having good technical and transferable skills: including skills in literacy, numeracy, application of logic, problem solving, communication, IT and computation, independent and team working, and time management.

Students of this programme may have the opportunity to undertake an international exchange (for one semester or a complete academic year) under Queen Mary's International Exchange Programme, or shorter term placements within the School's research laboratories or with appropriate UK employers during the summer vacations. Positions on exchanges and placements are subject to a successful application, and are awarded on a competitive basis.

This degree is focused on pharmaceutical chemistry and thereby naturally leads onto careers in the pharmaceuticals industry, but there are many opportunities for employment within the wider field of chemistry including the following areas: chemical industry; food industry; mining, oil and gas industries; consumer products (e.g. cosmetics); analytical and forensic services; teaching and education; environmental protection.

Opportunities for employment outside the field of chemistry would include careers in the following areas: finance; commerce; civil service; law; journalism; publishing; healthcare; technical sales; information technology.

Programme Specification Approval

Person completing Programme Specification	Dr N Lebrasseur
Person responsible for management of programme	Dr P B Wyatt
Date Programme Specification produced/amended by School Learning and Teaching Committee	28 Jan 2015
Date Programme Specification approved by Taught Programmes Board	