Programme Title: BEng. Medical Materials (B890/B893)

Programme Specification

Awarding Body/Institution: Queen Mary, University of London
Teaching Institution: Queen Mary, University of London
Name of Final Award and Programme Title: Bachelor of Engineering (BEng) Medical Materials
Name of Interim Award(s):
Duration of Study / Period of Registration: 3 years (plus optional year in industry)
QM Programme Code / UCAS Code(s): B890 (B893 with year in industry)
QAA Benchmark Group: Materials
FHEQ Level of Award: Level 6
Programme Accredited by: Institute of Materials, Minerals and Mining
Date Programme Specification Approved:
Responsible School / Institute: School of Engineering & Materials Science

Schools which will also be involved in teaching part of the programme:

Institution(s) other than Queen Mary that will provide some teaching for the programme:

Programme Outline

The BEng degree in Medical Materials is a 3 year integrated bachelors programme, part of suite of programmes offered in Medical Materials at Queen Mary. The Medical Materials programme aspires to produce the type of highly skilled, motivated, creative and team-work oriented graduates which the healthcare-related industry needs in order to improve the delivery, quality and longevity of interventional and therapeutic medical treatments.

The suite of Medical Materials programmes at QMUL are designed to equip students with an understanding of the uses and limitations of current and emerging medical materials, the complexity and aggressive nature of the biological environment, the varied ways in which materials can respond to this environment, the materials properties that can modulate the host response, tools that can be used to help predict or monitor behavior and the importance of interdisciplinary thinking, ethics and regulatory approval in next generation medical materials development and optimisation.

The first two years of the Medical Materials programme provides a firm grounding in subjects fundamental to all branches of Materials, including materials chemistry, processing and properties, in addition to modules introducing the specific challenges and solutions materials face when used in the clinical environment.

The third year gives you the opportunity to undertake an individual project, which may be an experimental research project, a
Programme Title: BEng. Medical Materials (B890/B893)

Theoretical investigation, a detailed design study, or a critical review of a topic in Medical Materials of mutual interest to yourself and your supervisor.

The Medical Materials degree programmes are accredited by the Institute of Materials, Mineral and Mining (IOMMM), and students are entitled to become graduate members of IOMMM on graduation. Enrolment as a student member of the IOMMM is also encouraged.

Aims of the Programme

The overall aims of the programme are:
• to provide an education in medical materials science and engineering of a standard recognized to be amongst the highest in UK institutions;
• to take a multi-disciplinary approach to the elements of medical materials science and engineering, including soft and hard tissues, diseases and biomechanics;
• to educate our students in the scientific and mathematical principles underpinning materials engineering;
• to enable all our students to achieve their academic potential by providing a stimulating, friendly and supportive environment;
• to offer challenging programmes which provide our graduates with a clear pathway to Chartered Engineering status;
• to prepare our graduates with discipline-specific knowledge and transferable skills that will equip them for employment and continued professional development through self-learning;
• to develop an appreciation of the relative merits of a proposed medical materials solution to those who need translate them into clinical or medical artefacts and the financial implications.

Specific aims include:
• analytical, creative, organisational, practical and communication skills,
• problem-recognition and solving abilities
• competence in discipline-specific topics which contribute to the solution of problems applied to medical materials selection, implant or device specification and design
• an appreciation of how theoretical and practical approaches can be combined to arrive at a solution balanced to optimise in vivo performance
• an appreciation of the financial context of the development of a medical material,
• an understanding of the relationship between their discipline and social, ethical, economic and environmental issues and constraints.
• the detailed skills needed to undertake a research/ development/ design project in depth, understanding the technical, financial and time limitations.

What Will You Be Expected to Achieve?

Acquire a body of contemporary factual knowledge incorporating the fundamental principles of Materials Science and Engineering and basic medical physiology and develop the ability to apply this knowledge in the selection and design of materials for medical devices.

Academic Content:

A1	Knowledge of the fundamental principles of materials science and engineering necessary to underpin their education in Medical Materials
A2	The application of materials science principles to medical materials as applied to problems of materials development and selection, implant or device specification and design
A3	The scientific principles behind physiological systems and biocompatibility within the human organism
A4	The principles of engineering and materials science behind hierarchical anatomical systems
Programme Title: BEng. Medical Materials (B890/B893)

A5 Understanding of mathematical principles underpinning Medical Materials and Materials Science and Engineering more generally, in addition to the mathematical methods, tools and notations used in the analysis of Medical Materials Science and Engineering problems.

A6 An understanding of concepts from a range of areas, particularly those related to medicine, and the ability to apply them effectively in Medical materials engineering projects.

A7 An awareness of developing technologies related to Medical Materials Science and Engineering.

A8 An understanding of how scientists, engineers and clinicians interface within the medical sector and the technological requirements of the medical sector.

A9 Knowledge of the ethical and moral issues underpinning the Medical Materials profession and how a medical materials scientist must operate within these.

Disciplinary Skills - able to:

B1 Apply materials science and engineering principles to a range of medically related problems and applications

B2 Extract data pertinent to an unfamiliar problem, and apply it, particularly in relation to the medical field.

B3 Apply quantitative methods and computer software relevant to engineering disciplines, to solve Medical Materials problems.

B4 Demonstrate creativity and innovation in the synthesis of solutions

B5 Use fundamental knowledge to investigate new and emerging medical related technologies.

B6 Effectively communicate and interface with clinicians to formulate medical problems from an engineering viewpoint.

B7 Learn new theories, concepts, methods etc. in unfamiliar situations.

B8 Develop, monitor and update a plan, to reflect a changing operating environment.

Attributes:

C1 Engage critically with knowledge, and apply it in a rigorous way

C2 Use communications technologies competently to engage with a range of audiences

C3 Critically evaluate the reliability of different sources of information

C4 Use information for evidence based decision making

C5 Develop a spirit of enquiry and a desire for continued learning throughout their careers

C6 Use quantitative data confidently and competently

C7 Develop the necessary transferable skills to be effective in the workplace
Programme Title: BEng. Medical Materials (B890/B893)

How Will You Learn?
Teaching materials are delivered through a combination of lectures, problem solving classes, laboratory practicals, and a variety of coursework. In addition problem-based learning plays a role in the your first and second years.

You will undertake a major individual research project in the third year, and a substantive industrially led group research project in the fourth year, both of which are designed to assimilate and utilise knowledge gained throughout the degree towards approaching a real Medical Materials Engineering problem.

The 3rd year project allows you to participate in the specialist internationally-recognised research taking place within the School of Engineering and Materials Science.

How Will You Be Assessed?
Assessment is continuous throughout the degree, with written reports, projects, presentations, group work and exams (exams take place in the summer only). The degree programme has eight modules per year split over two semesters, and most are assessed by a combination of coursework and an end of year exam. Some modules, such as the research and design projects, count for two or four modules.

How is the Programme Structured?
The Medical Materials BEng programme at QMUL is a 3 year programme accredited by the Institute of Materials, Minerals and Mining, which means students can progress to chartered engineer status (CEng). The first three years of the BEng are identical to the four year MEng, meaning that you have the option to transfer to the MEng if your grades are appropriate.

Whilst at University, you gain a solid foundation in Materials by studying core Materials modules such as Mathematics for Materials Scientist, Properties of Matter, Materials and Selection and Materials Processing and Application. In addition, you take specialist Medical Materials modules starting in year 1 and these increase in number throughout the degree programme (see programme structure below).

We also offer the BEng degree 'with Industrial Experience' where you would take a year working in a Medical Materials related industrial position between your third and fourth years of study. You are paid by the company during this year which also counts towards their degree. If you are not registered on a 'with Industrial Experience' programme you can opt into it at any stage prior to taking your placement. You would extend your studies by a year as you undertake a structured programme at one of our many partner companies. To support this activity we employ a full time Industrial Placement Manager in the School, who supports you through the application process and then manages the programme whilst you are on the placement. Recent placement employers include: DSTL, RollsRoyce, DePuy, Aloca, Microsoft, ARTIS, GE, Caterham F1 & Philips. This exciting opportunity gives you a valuable insight into future careers and enhances employability.

Academic Year of Study 1

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
</table>

Queen Mary
University of London
Programme Title: BEng. Medical Materials (B890/B893)

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science 1: Properties of Matter</td>
<td>MAT100</td>
<td>15</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Materials Selection and Mechanical Modelling</td>
<td>MAT102</td>
<td>15</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Clinical Problems in Biomedical Engineering and Materials</td>
<td>MAT4003</td>
<td>15</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Student Centred Learning 1</td>
<td>MAT106</td>
<td>30</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semesters 1 & 2</td>
</tr>
<tr>
<td>Mathematics for Materials Scientists</td>
<td>MAT115</td>
<td>15</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Materials Science 2: Processing and Applications</td>
<td>MAT206</td>
<td>15</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Clinical Solutions in biomedical engineering and materials</td>
<td>MAT4004</td>
<td>15</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Transferable Skills for Engineers and Materials Scientists</td>
<td>MAT4444</td>
<td>0</td>
<td>4</td>
<td>Compulsory</td>
<td>1</td>
<td>Semesters 1 & 2</td>
</tr>
</tbody>
</table>

Academic Year of Study 2

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry for Materials</td>
<td>MAT5002</td>
<td>15</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Polymers</td>
<td>MAT313</td>
<td>15</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Surfaces and Interfaces in Medical Materials</td>
<td>MAT212</td>
<td>15</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Student Centred Learning 2</td>
<td>MAT308</td>
<td>30</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semesters 1 & 2</td>
</tr>
<tr>
<td>Metals</td>
<td>MAT321</td>
<td>15</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Structural Characterisation</td>
<td>MAT400</td>
<td>15</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Medical Physiology</td>
<td>MAT5222</td>
<td>15</td>
<td>5</td>
<td>Compulsory</td>
<td>2</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Programme Title: BEng. Medical Materials (B890/B893)

Academic Year of Study 3

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Selection in Design</td>
<td>MAT602</td>
<td>15</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Ceramics</td>
<td>MAT522</td>
<td>15</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Tissue Engineering and Regenerative Medicine</td>
<td>MAT311</td>
<td>15</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Individual Undergraduate Research Project</td>
<td>MAT500</td>
<td>30</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semesters 1 & 2</td>
</tr>
<tr>
<td>Manufacturing Processes</td>
<td>MAT601</td>
<td>15</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Failure of Solids</td>
<td>MAT501</td>
<td>15</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Science of Biocompatibility</td>
<td>MAT6312</td>
<td>15</td>
<td>6</td>
<td>Compulsory</td>
<td>3</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

What Are the Entry Requirements?

Minimum Entry Requirements with A-levels are:
ABB or 320 points from 3 A-levels
Must include two from maths, physics, biology, or chemistry.
Maths/science subjects A-level must be an B or above

Other qualifications:
International Baccalaureate - 34 points or above overall, with two from maths, physics, biology, or chemistry at higher level
European Baccalaureate - 80% or above including maths and/or science
French Baccalaureate - 14/20 overall, with 14/20 in maths and/or science
HE Advanced Diploma - Grade B or above overall, with Maths or science A-level grade B or above

How Do We Listen and Act on Your Feedback?

The Staff-Student Liaison Committee provides a formal means of communication and discussion between the School and its students. The committee consists of student representatives from each year of the programme, together with appropriate representation from staff within the School. It is designed to respond to both the general needs of students, and subject specific concerns, as well as act as a forum for discussing programme and module developments. Staff-Student Liaison Committees meet regularly throughout the year.

The chair of the SSLC sits on the School’s Education and Learning Committee, which advises the School’s Director of Taught Programmes on all matters relating to the delivery of taught programmes at School level, and ensures that student feedback is fed into the reviewing of modules and programmes. Student views are also incorporated in the Committee’s work in other ways, such as through the National Student Survey (NSS), student module evaluations and module forums. We also use the forums to listen to student feedback on an individual module basis and develop materials and support classes to address comments or requests suggested in the forum.

All Schools operate an Annual Programme Review (APR) of their taught undergraduate and postgraduate provision. APR is a continuous process of reflection and action planning which is owned by those responsible for programme delivery; the main
Programme Title: BEng. Medical Materials (B890/B893)

Document of reference for this process is the Taught Programmes Action Plan (TPAP) which is the summary of the School’s work throughout the year to monitor academic standards and to improve the student experience.

Academic Support

Academic support for individual modules is the responsibility of the module organiser and co-organiser(s). These are supported by Teaching Assistants and post-graduate students, many of whom will have studied the modules themselves as undergraduates in the School. In addition there is technician support available for practical sessions.

Academic support for the programme as a whole, including choosing optional modules and possible transfer between programmes is provided in the first instance by the Personal Tutor, with further guidance available from the Senior Tutor and Programme Director, the latter having overall responsibility for the programme structure. The Programme Director in turn reports to the relevant Discipline Teaching Group in the School, the Chair of which is a member of the School's Education and Learning Committee.

We additionally have a School Office, with many student facing staff available to support student learning and one full time Student Support Officer. These staff members will help with coursework submission, time tabling concerns and other general administration as well as providing pastoral support and further guidance on dealing with extenuating circumstances. We also have staff designated to support students in achieving industrial placements and providing careers advice.

Programme-specific Rules and Facts

The Programme operates under the standard QMUL rules for MEng programmes. Students on the "with Industrial Experience" version need a year 1 average of at least 55% to progress to year 2 of the programme. Failure to achieve this will result in a transfer to the version without Industrial Experience.

Specific Support for Disabled Students

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.

Students can access advice, guidance and support in the following areas:
• Finding out if you have a specific learning difficulty like dyslexia
• Applying for funding through the Disabled Students' Allowance (DSA)
• Arranging DSA assessments of need
• Special arrangements in examinations
• Accessing loaned equipment (e.g. digital recorders)
• Specialist one-to-one “study skills” tuition
• Ensuring access to course materials in alternative formats (e.g. Braille)
• Providing educational support workers (e.g. note-takers, readers, library assistants)
• Mentoring support for students with mental health issues and conditions on the autistic spectrum.

Links With Employers, Placement Opportunities and Transferable Skills

We place a strong emphasis on supporting our students in achieving quality graduate positions at the end of their degrees. In the first year, all students take a transferable skills module, designed to both support them through the transition to university life, and also introduce the important employability skills they will need in later life. We run an extensive range of employability training events, with weekly timetabled careers slots and field trip visits to more than 20 collaborating companies. Our relationships with both the Careers Group and Student Services are strong in SEMS, and we co-deliver our training in study skills and career development for maximum benefit.

Since 2011 we have had a placement officer working in the school dedicated to supporting our new "with Industrial Experience"
Programme Title: BEng. Medical Materials (B890/B893)

Programmes which have grown immensely in popularity in the last few years.

The School has run Industrial Liaison Forums (ILFs) each academic year since the School was formed in 2007. Since 2010, the Autumn event is focused on encouraging more industrial participation in our research programmes, rewarding excellence by allowing companies to present student prizes for academic excellence across the School and also as a way of allowing companies and our students to interact through themed panel sessions and a careers fair. The Spring event aims to showcase our best third year project students and all of our group MEng projects. This event again allows extensive networking opportunities between employers and placement providers with all of our students in SEMS. Typically these events are attended by over 50 companies including our regular student prizes sponsors: Tata Steel, Eaton Industries, JRI, GSK, RollsRoyce, Apatech, Morgan Crucible, ARTIS, NPL, TWI, Becker Coatings; Advanced Healthcare Ltd & Apatech. Many of these companies are also actively engaged in student projects and in addition to these our events are also attended by additional companies that also collaborate with projects such as: Jaguar Land Rover, Alcoa, Perryman, DSTL, BAE, Airbus, Corin, DePuy, Baxter’s Healthcare, Norman Foster Partners and many others. In recent times we have extended these events to encourage participation from our more recent alumni as well.

These forums have a direct impact by encouraging employers to sponsor and support the student projects and to provide real engineering case studies to engage the students throughout the curriculum. Many of these companies also support our lecture programme in individual modules. Recent case studies that have been taught and assessed were delivered by companies including Tata, Gillette, Sugru, JRI, DuPuy, Apatech, Artis, BAE, DSTL, Rolls Royce, Perryman and Advanced Healthcare Ltd.

Programme Specification Approval

Person completing Programme Specification	KARIN HING
Person responsible for management of programme	KARIN HING
Date Programme Specification produced/amended by School Learning and Teaching Committee	
Date Programme Specification approved by Taught Programmes Board	