Programme Title: MSc in Mathematical Finance

Programme Specification

Awarding Body/Institution: Queen Mary University of London
Teaching Institution: Queen Mary University of London
Name of Final Award and Programme Title: MSc in Mathematical Finance
Name of Interim Award(s): None
Duration of Study / Period of Registration: 1 year (full-time), 2 years (part-time)
QM Programme Code / UCAS Code(s): G1S2 (full-time), G1S3 (part-time)
QAA Benchmark Group: N/A
FHEQ Level of Award: Level 7
Programme Accredited by: N/A
Date Programme Specification Approved: N/A
Responsible School / Institute: School of Mathematical Sciences

Schools which will also be involved in teaching part of the programme:
- School of Economics

Institution(s) other than Queen Mary that will provide some teaching for the programme:
- N/A

Programme Outline

The MSc in Mathematical finance is a specialised Masters degree designed to equip talented individuals with the skills necessary for a successful career in the finance profession. In-depth and rigorous training is provided for roles in quantitative analysis, trading, financial engineering and structuring, risk management, and software development. In this programme students will:
- Understand advanced mathematical models used in finance
- Learn about a range of important numerical tools and techniques
- Gain practical skills in computer programming
- Undertake a substantial project under expert supervision, in a chosen area of interest.

Aims of the Programme

The programme is designed to prepare science and engineering graduates for a career in the financial and banking industry, for example as preparation for trading, structuring and risk management. It also aims to meet regional and national need for taught mathematical finance at the postgraduate level. The programme provides a thorough foundation of mathematical models and techniques as applied to finance and covers the main concepts and analytical tools of financial engineering including asset...
Programme Title: MSc in Mathematical Finance

pricing and financial derivatives. It also provides a wide range of transferable skills in preparation for career paths in banking, industry, and commerce.

What Will You Be Expected to Achieve?

Students who complete the programme will be able to demonstrate their understanding of the academic content (A1-A6), acquire disciplinary skills (B1-B3) and gain graduate attributes (C1 and C2).

Academic Content:

A1 Understand basic techniques and tools of financial modeling.
A2 Understand asset pricing theory and related subjects.
A3 Understand risk management and related subjects.
A4 Achieve an understanding of both mathematical techniques and financial market structure.
A5 Understand applied probability and stochastic processes in the context of finance.
A6 Apply Black-Scholes theory to option pricing.

Disciplinary Skills - able to:

B1 Perform analytic calculations estimating risk.
B2 Choose an optimum portfolio
B3 Write simple code in C++

Attributes:

C1 Demonstrate report-writing, initiative, planning and time management skills through a substantive MSc research project.
C2 Work in a team during the classes and in preparation for the lectures.

How Will You Learn?

The programme is delivered via a mixture of lectures, tutorials and programming assignments. Successful completion requires intensive coursework. The majority of tutorials taught within SMS require students to engage with in-class exercises. Modules with computational content are delivered in PC labs and require students to engage in practical tutorial sessions. Students are
Programme Title: MSc in Mathematical Finance

required to attend professional skills workshops as well as lectures and seminars delivered by industry professionals relating to their studies, which are organised within SMS and SEF. Students have access to IT facilities, including Bloomberg terminals and specialist software packages in SMS and SEF.

How Will You Be Assessed?

The programme assessment is by written examination and a written dissertation, in line with the regulations for projects/dissertations at Masters level. Where computational and programming skills are delivered, modules have in-term assessed project work and coursework.

How is the Programme Structured?

The programme consists of 75 credits of compulsory and 45 credits of elective taught study as outlined in the below module table.

In semester one students will select one of the following two compulsory modules:
ECOM050 Investment Management or
ECOM065 Investments.

In order to direct learning the 45 credits of elective taught study offered are organised into groups. Students are required to take 15 credits of study from each of the following groups:
Group A: ECOM003 (Econometrics A) and ECOM014 (Time Series Analysis).
Group B: MTH773P (Advanced Computing in Finance) and MTH774P (Portfolio Theory and Risk Management).
Group C: ECOM078 (Actuarial Finance), ECOM076 (Alternative Investments), ECOM025 (Financial Econometrics), ECOM071 (Topics in Applied Finance) and ECOM077 (Valuation and Private Equity).

Full time students study three compulsory and one elective module in semester one, and two compulsory and two elective modules in semester two, followed by a dissertation/project in semester three. Part time students complete four modules in their first year of study (two per semester) and four modules in their second year of study (two per semester) alongside a dissertation/project which they begin to work on in semester three of year one.

Students are offered ten pre-sessional hours in week 0. The three compulsory mathematics modules cover the most important mathematical techniques used in mathematical finance. The two compulsory economics modules cover the relevant financial instruments, these modules are offered within the Masters programme run by the School of Economics and Finance (SEF). Students are offered two specialist electives in financial mathematics by the SMS, the rest of the electives are existing modules offered by SEF.

Students are offered professional seminar series which include career training and presentations by professionals from the banking industry.
Programme Title: MSc in Mathematical Finance

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
<th>Credits</th>
<th>Level</th>
<th>Module Selection Status</th>
<th>Academic Year of Study</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Methods in Finance</td>
<td>MTH770P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Foundations of Mathematical Modelling in Finance</td>
<td>MTH771P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Investments</td>
<td>ECOM065</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Investment Management</td>
<td>ECOM050</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Time Series Analysis</td>
<td>ECOM014</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Econometrics A</td>
<td>ECOM003</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Stochastic Calculus and Black Scholes Theory</td>
<td>MTH772P</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Financial Derivatives</td>
<td>ECOM026</td>
<td>15</td>
<td>7</td>
<td>Compulsory</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>MSc Dissertation (10 000 words)</td>
<td>MTH775P</td>
<td>60</td>
<td>7</td>
<td>Core</td>
<td>1</td>
<td>Semesters 1-3</td>
</tr>
<tr>
<td>Topics in Applied Finance</td>
<td>ECOM071</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Alternative Investments</td>
<td>ECOM076</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Valuation and Private Equity</td>
<td>ECOM077</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Financial Econometrics</td>
<td>ECOM025</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Pre-sessional Mathematics</td>
<td></td>
<td>0</td>
<td>6</td>
<td>Study only</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Pre-sessional Economics</td>
<td></td>
<td>0</td>
<td>6</td>
<td>Study only</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Actuarial Finance</td>
<td>ECOM078</td>
<td>15</td>
<td>7</td>
<td>Elective</td>
<td>1</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Programme Title: MSc in Mathematical Finance

What Are the Entry Requirements?

Entrants must have the equivalent of a British first or good second class honours degree in a subject with a substantial mathematical component (mathematics, statistics, physics, engineering, economics, or computer science). The Admissions Tutor assesses applicant suitability for the programme individually.

Entrants for whom English is a second language must meet the minimum IELTS requirement of 6.5 (or equivalent).

How Do We Listen and Act on Your Feedback?

The Staff-Student Liaison Committee provides a formal means of communication and discussion between schools/institutes and its students. The committee consists of student representatives from each year in the school/institute together with appropriate representation from staff within the school/institute. It is designed to respond to the needs of students, as well as act as a forum for discussing programme and module developments. Staff-Student Liaison Committees meet regularly throughout the year.

Each school/institute operates a Learning and Teaching Committee, or equivalent, which advises the School/Institute Director of Taught Programmes on all matters relating to the delivery of taught programmes at school level including monitoring the application of relevant QM policies and reviewing all proposals for module and programme approval and amendment before submission to Taught Programmes Board. Student views are incorporated in the committee's work in a number of ways, such as through student membership, or consideration of student surveys.

All schools/institutes operate an Annual Programme Review of their taught undergraduate and postgraduate provision. APR is a continuous process of reflection and action planning which is owned by those responsible for programme delivery; the main document of reference for this process is the Taught Programmes Action Plan (TPAP) which is the summary of the school/institute's work throughout the year to monitor academic standards and to improve the student experience. Students' views are considered in this process through analysis of the NSS and module evaluations.

Academic Support

Every student is assigned an academic adviser to offer academic guidance throughout their studies, for example guidance on selection of modules at the start of the year. The Student Support teams in SMS and SEF ensure that students feel able to consult staff in either School to resolve any difficulties that may arise.

The Programme Director works with SMS and SEF academic staff to organise project supervision for each student. The Postgraduate Programme Administrator and Student Support Officer in SMS liaise with the Programme Director and with SEF staff to run a full induction programme for new students.

Programme-specific Rules and Facts

N/A

Specific Support for Disabled Students

Queen Mary has a central Disability and Dyslexia Service (DDS) that offers support for all students with disabilities, specific learning difficulties and mental health issues. The DDS supports all Queen Mary students: full-time, part-time, undergraduate, postgraduate, UK and international at all campuses and all sites.
Students can access advice, guidance and support in the following areas:
- Finding out if you have a specific learning difficulty like dyslexia
- Applying for funding through the Disabled Students’ Allowance (DSA)
- Arranging DSA assessments of need
- Special arrangements in examinations
- Accessing loaned equipment (e.g. digital recorders)
- Specialist one-to-one “study skills” tuition
- Ensuring access to course materials in alternative formats (e.g. Braille)
- Providing educational support workers (e.g. note-takers, readers, library assistants)
- Mentoring support for students with mental health issues and conditions on the autistic spectrum.

Links With Employers, Placement Opportunities and Transferable Skills

The MSc in Mathematical Finance programme prepares students for a wide range of careers, especially in the banking and finance sector, as well as marketing, public services, consultancy, industry and commerce. The analytic and computing skills acquired throughout the programme are much valued in the financial sector and a number of recent graduates from the School of Mathematical Sciences have gone on to work for companies such as the Royal Bank of Scotland, HSBC, Procter and Gamble, Barclays Capital, JP MorganChase and EDF Energy. First destinations of School of Economics and Finance graduates include some of the most prestigious universities in UK, continental Europe and Asia; several independent economic research centres and private institutions; many governmental research departments and regulatory bodies, such as the antitrust authorities and the financial regulatory agencies; some international institutions such as the European Central Bank, the Bank of England, the European Commission, the International Monetary Fund and the World Bank.

Programme Specification Approval

Person completing Programme Specification	Sarah Coleman
Person responsible for management of programme	Dr Sebastian del Bano Rollin
Date Programme Specification produced/amended by School Learning and Teaching Committee	26 Oct 2015
Date Programme Specification approved by Taught Programmes Board	